Cohomology and Stiefel-Whitney Classes of Flat Manifolds

joint work with Roberto Miatello and Juan Pablo Rossetti, Cordoba, Argentina

Köln – 29.01.10
1. Compact flat manifolds and Bieberbach groups
 - Flat manifolds and spectra
 - Bieberbach groups
 - Cohomology of Bieberbach groups

2. The Lyndon-Hochschild-Serre Spectral Sequence
 - The Charlap-Vasquez method
 - Use of the LHS Spectral Sequence
 - Second Stiefel-Whitney class

3. Topology and spectra
 - Cohomology and spectral properties
 - Stiefel-Whitney classes and spectral properties
Flat manifolds and spectra

\(M, M' \) are \(p \)-isospectral \(\iff \) have the same spectrum with respect to the Hodge Laplacian \(\Delta_p \) acting on \(p \)-forms.

For flat manifolds \(\mathbb{R}^n/\Gamma \) of diagonal type equal Sunada numbers (combinatorial property on \(\Gamma \)) \(\implies \) \(p \)-isospectrality for all \(p \) \((0 \leq p \leq n)\)

\(M, M' \) \(p \)-isospectral \(\implies \) \(b_p(M) = b_p(M') \)

(the \((\mathbb{Z})\)-Betti number \(b_p \) equals the multiplicity of the 0 eigenvalue of \(\Delta_p \))

So, the torsionfree part cannot be distinguished \(\implies \) it is not so easy to exhibit \(p \)-isospectral manifolds for all \(p \) having different cohomological properties.

We construct for instance \(M, M', p \)-isospectral for all \(p \) with

- \(H^1(M, \mathbb{Z}_2) \cong H^1(M', \mathbb{Z}_2) \) but \(H^2(M, \mathbb{Z}_2) \not\cong H^2(M', \mathbb{Z}_2) \)
- same \((\mathbb{Z}_2)\)-cohomology but such that \(w_2(M) \neq 0 \) and \(w_2(M') = 0 \)
Flat manifolds and spectra

\[M, M' \text{ are } p\text{-isospectral} \iff \text{have the same spectrum with respect to the Hodge Laplacian } \Delta_p \text{ acting on } p\text{-forms.} \]

For flat manifolds \(\mathbb{R}^n / \Gamma \) of diagonal type equal Sunada numbers (combinatorial property on \(\Gamma \)) \(\implies p\text{-isospectrality for all } p \) (0 \(\leq \) p \(\leq \) n)

\[M, M' \text{ p-isospectral} \implies b_p(M) = b_p(M') \]

(\(p \)-Betti number \(b_p \) equals the multiplicity of the 0 eigenvalue of \(\Delta_p \))

So, the torsionfree part cannot be distinguished \(\implies \) it is not so easy to exhibit \(p \)-isospectral manifolds for all \(p \) having different cohomological properties.

We construct for instance \(M, M', p\text{-isospectral for all } p \) with

- \(H^1(M, \mathbb{Z}_2) \cong H^1(M', \mathbb{Z}_2) \) but \(H^2(M, \mathbb{Z}_2) \not\cong H^2(M', \mathbb{Z}_2) \)
- same \((\mathbb{Z}_2)\)-cohomology but such that \(w_2(M) \neq 0 \) and \(w_2(M') = 0 \)
Flat manifolds and spectra

M, M' are p-isospectral \iff have the same spectrum with respect to the Hodge Laplacian Δ_p acting on p-forms.

For flat manifolds \mathbb{R}^n/Γ of diagonal type equal Sunada numbers (combinatorial property on Γ) $\implies p$-isospectrality for all p ($0 \leq p \leq n$)

M, M' p-isospectral $\implies b_p(M) = b_p(M')$

(the (\mathbb{Z})-Betti number b_p equals the multiplicity of the 0 eigenvalue of Δ_p)

So, the torsionfree part cannot be distinguished \implies it is not so easy to exhibit p-isospectral manifolds for all p having different cohomological properties.

We construct for instance M, M', p-isospectral for all p with

- $H^1(M, \mathbb{Z}_2) \cong H^1(M', \mathbb{Z}_2)$ but $H^2(M, \mathbb{Z}_2) \not\cong H^2(M', \mathbb{Z}_2)$
- same (\mathbb{Z}_2)-cohomology but such that $w_2(M) \neq 0$ and $w_2(M') = 0$
Flat manifolds and spectra

\[M, M' \text{ are } p\text{-isospectral} \iff \text{have the same spectrum with respect to the Hodge Laplacian } \Delta_p \text{ acting on } p\text{-forms.} \]

For flat manifolds \(\mathbb{R}^n / \Gamma \) of diagonal type equal Sunada numbers (combinatorial property on \(\Gamma \)) \(\implies p\)-isospectrality for all \(p \) \((0 \leq p \leq n)\)

\[M, M' \text{ } p\text{-isospectral} \implies b_p(M) = b_p(M') \]
(the \((\mathbb{Z})\)-Betti number \(b_p \) equals the multiplicity of the 0 eigenvalue of \(\Delta_p \))

So, the torsionfree part cannot be distinguished \(\implies \)

it is not so easy to exhibit \(p\)-isospectral manifolds for all \(p \)
having different cohomological properties.

We construct for instance \(M, M' \), \(p\)-isospectral for all \(p \) with

- \(H^1(M, \mathbb{Z}_2) \cong H^1(M', \mathbb{Z}_2) \) but \(H^2(M, \mathbb{Z}_2) \not\cong H^2(M', \mathbb{Z}_2) \)
- same \((\mathbb{Z}_2)\)-cohomology but such that \(w_2(M) \neq 0 \) and \(w_2(M') = 0 \)
Examples in column notation

Hantzsche-Wendt 3-manifold or didicosm

M_Γ: flat manifold of dimension $n = 3$,

Holonomy group of $\Gamma = \mathbb{Z}_2^2$,

generated by $B_1 = \text{diag}(1, -1, -1)$, $B_2 = \text{diag}(-1, 1, -1)$,

$b_1 = \frac{e_1 + e_3}{2}$, $b_2 = \frac{e_1 + e_2}{2}$; i.e., $\Gamma = \langle B_1 L_{b_1}, B_2 L_{b_2}; L_{\mathbb{Z}^3} \rangle$.

M_Γ is orientable since $\det B = 1$ for every $BL_b \in \Gamma$.

In column notation

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{-1}{2}$</td>
</tr>
<tr>
<td>-1</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$\frac{-1}{2}$</td>
<td>-1</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_2</th>
<th>$B_1 B_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{-1}{2}$</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{-1}{2}$</td>
</tr>
<tr>
<td>$\frac{-1}{2}$</td>
<td>-1</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>
Examples in column notation

Hantzsche-Wendt 3-manifold or didicosm

$M_Γ$: flat manifold of dimension $n = 3$,

Holonomy group of $Γ = \mathbb{Z}_2^2$,

generated by $B_1 = \text{diag}(1, -1, -1), B_2 = \text{diag}(-1, 1, -1),

\begin{align*}
b_1 &= \frac{e_1 + e_3}{2}, \quad b_2 = \frac{e_1 + e_2}{2}; \text{i.e., } Γ = \langle B_1 L_{b_1}, B_2 L_{b_2}; L_{\mathbb{Z}^3} \rangle.
\end{align*}

$M_Γ$ is orientable since $\det B = 1$ for every $BL_b \in Γ$.

In column notation

\begin{align*}
B_1 & \quad B_2 \\
1 \frac{1}{2} & \quad -1 \frac{1}{2} \\
-1 & \quad 1 \frac{1}{2} \\
-1 \frac{1}{2} & \quad -1
\end{align*}

or

\begin{align*}
B_1 & \quad B_2 & \quad B_1 B_2 \\
1 \frac{1}{2} & \quad -1 \frac{1}{2} & \quad -1 \\
-1 & \quad 1 \frac{1}{2} & \quad -1 \frac{1}{2} \\
-1 \frac{1}{2} & \quad -1 & \quad 1 \frac{1}{2}
\end{align*}
Examples in column notation

Hantzsche-Wendt 3-manifold or didicosm

\(M_\Gamma \): flat manifold of dimension \(n = 3 \),

Holonomy group of \(\Gamma = \mathbb{Z}_2^2 \),
generated by \(B_1 = \text{diag}(1, -1, -1) \), \(B_2 = \text{diag}(-1, 1, -1) \),

\[
\begin{align*}
b_1 &= \frac{e_1 + e_3}{2}, \\
b_2 &= \frac{e_1 + e_2}{2}
\end{align*}
\]
i.e., \(\Gamma = \langle B_1 L_{b_1}, B_2 L_{b_2}; L_{\mathbb{Z}^3} \rangle \).

\(M_\Gamma \) is orientable since \(\det B = 1 \) for every \(BL_b \in \Gamma \).

In column notation

\[
\begin{array}{cc}
B_1 & B_2 \\
\hline
1 & -1 \\
-1 & 1 \\
-1 & -1
\end{array}
\]

or

\[
\begin{array}{ccc}
B_1 & B_2 & B_1B_2 \\
\hline
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}
\]
zo₂-class polynomial

\[\Gamma: \text{Bieberbach group of diagonal type and holonomy group } \mathbb{Z}_2^k = \langle B_1, \ldots, B_k \rangle. \]

\[\bar{\beta} \in H^2(\mathbb{Z}_2^k, \Lambda^* \otimes \mathbb{Z}_2) \cong (H^2(\mathbb{Z}_2^k, \mathbb{Z}_2))^n \]

The components \(\bar{\beta}_\ell \) of \(\bar{\beta} \) are homogeneous polynomials of degree two called the **\(\mathbb{Z}_2 \)-class polynomials** of \(\Gamma \).

Proposition

\[\bar{\beta}_\ell = \sum_{i : B_i e_\ell = e_\ell} x_i^2 + \sum_{i : b_{i\ell} = \frac{1}{2}} \sum_{j \neq i} x_i x_j, \]

where \(e_1, \ldots, e_n \) is the standard basis of \(\mathbb{R}^n \).
The components $\bar{\beta}_\ell$ of $\bar{\beta}$ are homogeneous polynomials of degree two called the \mathbb{Z}_2-class polynomials of Γ.

Proposition

$$\bar{\beta}_\ell = \sum_{i} x_i^2 + \sum_{i} \sum_{j \neq i} x_i x_j,$$

where e_1, \ldots, e_n is the standard basis of \mathbb{R}^n.

$\bar{\beta} \in H^2(\mathbb{Z}_2^k, \Lambda^* \otimes \mathbb{Z}_2) \cong (H^2(\mathbb{Z}_2^k, \mathbb{Z}_2))^n$
Lyndon-Hochschild-Serre spectral sequence

Γ is an extension of F by Λ, i.e., $0 \to \Lambda \to \Gamma \to F \to 1$

$$E^p,q_2 \Rightarrow \text{H}^{p+q}(\Gamma, R)$$

with

$$E^p,q_2 \cong \text{H}^p(F, \text{H}^q(\Lambda, R)),$$

(the coefficient ring R is regarded as a trivial Γ-module and $p, q \geq 0$)
LHS spectral sequence for Bieberbach groups

For Γ Bieberbach group of diag. type with holonomy group \mathbb{Z}_2^k

$$E_2^{p,q} = H^p(\mathbb{Z}_2^k, \mathbb{Z}_2) \otimes \wedge^q(\mathbb{Z}_2^*)$$

and their dimensions are given by

\[
\begin{array}{c|cccc}
 q & 2 & 1 & 0 & \\
 \hline
 2 & \binom{n}{2} & k \binom{n}{2} & \left(\frac{k+1}{2}\right)n & \\
 1 & n & kn & \left(\frac{k+1}{2}\right)n & \\
 0 & 1 & k & \left(\frac{k+1}{2}\right) & \\
 \hline
 0 & 1 & 2 & 3 & p
\end{array}
\]
The differential $d_{2}^{p,q}$ in low dimensions

Let $\varepsilon^{1}, \ldots, \varepsilon^{n}$ be a basis of $\Lambda^{*} \otimes \mathbb{Z}_{2} \cong (\mathbb{Z}_{2}^{n})^{*}$,

\[d_{2}^{0,1} \colon E_{2}^{0,1} \cong H^{1}(\mathbb{Z}_{n}, \mathbb{Z}_{2}) \cong (\mathbb{Z}_{2}^{n})^{*} \rightarrow E_{2}^{2,0} \cong H^{2}(\mathbb{Z}_{2}, \mathbb{Z}_{2}) \]

\[d_{2}^{0,1} \varepsilon^{i} = \overline{\beta}_{i}, \quad i = 1, \ldots, n \]

\[d_{2}^{1,1} \colon E_{2}^{1,1} \cong H^{1}(\mathbb{Z}_{2}, \mathbb{Z}_{2}) \otimes \mathbb{Z}_{2} \rightarrow E_{2}^{3,0} \cong H^{3}(\mathbb{Z}_{2}, \mathbb{Z}_{2}) \]

\[d_{2}^{1,1}(x_{i} \otimes \varepsilon_{j}) = x_{i} \cup \overline{\beta}_{j}, \quad i = 1, \ldots, k, \quad j = 1, \ldots, n \]

\[d_{2}^{0,2} \colon E_{2}^{0,2} \cong \Lambda^{2}(\mathbb{Z}_{2}^{n})^{*} \rightarrow E_{2}^{2,1} \cong H^{2}(\mathbb{Z}_{2}, (\mathbb{Z}_{2}^{n})^{*}) \]

\[d_{2}^{0,2}(\varepsilon^{i} \wedge \varepsilon^{j})(\varepsilon^{k}) = \delta_{ik} \overline{\beta}_{j} + \delta_{jk} \overline{\beta}_{i}, \quad i, j, k = 1, \ldots, n \]

where $\{\varepsilon^{i} \wedge \varepsilon^{j}\} (i < j)$ is a basis of $\Lambda^{2}(\mathbb{Z}_{2}^{n})^{*}$.
The differential $d_{2}^{p,q}$ in low dimensions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$d_{2}^{0,2}$</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>$d_{2}^{0,1}$</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>*</td>
<td>*</td>
<td>$d_{2}^{1,1}$</td>
<td>*</td>
</tr>
</tbody>
</table>

Let $\varepsilon^1, \ldots, \varepsilon^n$ be a basis of $\Lambda^* \otimes \mathbb{Z}_2 \cong (\mathbb{Z}_2^n)^*$.

$d_{2}^{0,1} : E_{2}^{0,1} \cong H^1(\mathbb{Z}_2, \mathbb{Z}_2) \cong (\mathbb{Z}_2^n)^* \longrightarrow E_{2}^{2,0} \cong H^2(\mathbb{Z}_2, \mathbb{Z}_2)$

$$d_{2}^{0,1} \varepsilon^i = \overline{\beta}_i \quad i = 1, \ldots, n$$

$d_{2}^{1,1} : E_{2}^{1,1} \cong H^1(\mathbb{Z}_2, \mathbb{Z}_2) \otimes \mathbb{Z}_2 \longrightarrow E_{2}^{3,0} \cong H^3(\mathbb{Z}_2, \mathbb{Z}_2)$

$$d_{2}^{1,1}(x_i \otimes \varepsilon_j) = x_i \cup \overline{\beta}_j \quad i = 1, \ldots, k, \quad j = 1, \ldots, n$$

$d_{2}^{0,2} : E_{2}^{0,2} \cong \Lambda^2(\mathbb{Z}_2^n)^* \longrightarrow E_{2}^{2,1} \cong H^2(\mathbb{Z}_2, (\mathbb{Z}_2^n)^*)$

$$d_{2}^{0,2}(\varepsilon^i \wedge \varepsilon^j)(\varepsilon_k) = \delta_{ik} \overline{\beta}_j + \delta_{jk} \overline{\beta}_i \quad i, j, k = 1, \ldots, n$$

where $\{\varepsilon^i \wedge \varepsilon^j\} (i < j)$ is a basis of $\Lambda^2(\mathbb{Z}_2^n)^*$.

The differential $d_2^{p,q}$ in low dimensions

Let $\varepsilon^1, \ldots, \varepsilon^n$ be a basis of $\Lambda^* \otimes \mathbb{Z}_2 \cong (\mathbb{Z}_2^n)^*$.

\[d_2^{0,1} : E_2^{0,1} \cong H^1(\mathbb{Z}_2^n, \mathbb{Z}_2) \cong (\mathbb{Z}_2^n)^* \longrightarrow E_2^{2,0} \cong H^2(\mathbb{Z}_2, \mathbb{Z}_2) \]

\[d_2^{0,1} \varepsilon^i = \bar{\beta}_i \quad i = 1, \ldots, n \]

\[d_2^{1,1} : E_2^{1,1} \cong H^1(\mathbb{Z}_2^k, \mathbb{Z}_2) \otimes \mathbb{Z}_2 \longrightarrow E_2^{3,0} \cong H^3(\mathbb{Z}_2, \mathbb{Z}_2) \]

\[d_2^{1,1}(x_i \otimes \varepsilon_j) = x_i \cup \bar{\beta}_j \quad i = 1, \ldots, k, \quad j = 1, \ldots, n \]

\[d_2^{0,2} : E_2^{0,2} \cong \Lambda^2(\mathbb{Z}_2^n)^* \longrightarrow E_2^{2,1} \cong H^2(\mathbb{Z}_2, (\mathbb{Z}_2^n)^*) \]

\[d_2^{0,2}(\varepsilon^i \wedge \varepsilon^j)(\varepsilon_k) = \delta_{ik}\bar{\beta}_j + \delta_{jk}\bar{\beta}_i, \quad i, j, k = 1, \ldots, n \]

where $\{\varepsilon^i \wedge \varepsilon^j\} (i < j)$ is a basis of $\Lambda^2(\mathbb{Z}_2^n)^*$.

8
The differential $d_2^{p,q}$ in low dimensions

Let $\varepsilon^1, \ldots, \varepsilon^n$ be a basis of $\Lambda^* \otimes \mathbb{Z}_2 \cong (\mathbb{Z}_2^n)^*$.

$$d_2^{0,1} : E_2^{0,1} \cong H^1(\mathbb{Z}_2^n, \mathbb{Z}_2) \cong (\mathbb{Z}_2^n)^* \longrightarrow E_2^{2,0} \cong H^2(\mathbb{Z}_2^k, \mathbb{Z}_2)$$

$$d_2^{0,1} \varepsilon^i = \bar{\beta}_i \quad i = 1, \ldots, n$$

$$d_2^{1,1} : E_2^{1,1} \cong H^1(\mathbb{Z}_2^k, \mathbb{Z}_2) \otimes \mathbb{Z}_2 \longrightarrow E_2^{3,0} \cong H^3(\mathbb{Z}_2^k, \mathbb{Z}_2)$$

$$d_2^{1,1}(x_i \otimes \varepsilon_j) = x_i \cup \bar{\beta}_j \quad i = 1, \ldots, k, \quad j = 1, \ldots, n$$

$$d_2^{0,2} : E_2^{0,2} \cong \Lambda^2(\mathbb{Z}_2^n)^* \longrightarrow E_2^{2,1} \cong H^2(\mathbb{Z}_2^k, (\mathbb{Z}_2^n)^*)$$

$$d_2^{0,2}(\varepsilon^i \wedge \varepsilon^j)(\varepsilon_k) = \delta_{ik}\bar{\beta}_j + \delta_{jk}\bar{\beta}_i, \quad i, j, k = 1, \ldots, n$$

where $\{\varepsilon^i \wedge \varepsilon^j\} (i < j)$ is a basis of $\Lambda^2(\mathbb{Z}_2^n)^*$.
Examples of application of the Charlap-Vasquez method

Computation of $H^1(\Gamma, \mathbb{Z}_2)$:

Theorem

Let M be an n-dimensional compact flat manifold with diagonal holonomy \mathbb{Z}_2^k. Then

$$\dim H^1(M, \mathbb{Z}_2) = n - \text{rank } d_{0,1}^{0,1} + k.$$

Note that $\text{rank } d_{0,1}^{0,1}$ coincides with the number of linearly independent \mathbb{Z}_2-class polynomials $\bar{\beta}_\ell$, $\ell = 1, \ldots, n.$
Examples of application of the Charlap-Vasquez method

Computation of $H^1(\Gamma, \mathbb{Z}_2)$:

![Diagram showing the computation of $H^1(\Gamma, \mathbb{Z}_2)$]

Theorem

Let M be an n-dimensional compact flat manifold with diagonal holonomy \mathbb{Z}_2^k. Then

$$\dim H^1(M, \mathbb{Z}_2) = n - \text{rank } d_{2}^{0,1} + k .$$

Note that $\text{rank } d_{2}^{0,1}$ coincides with the number of linearly independent \mathbb{Z}_2-class polynomials $\bar{\beta}_\ell$, $\ell = 1, \ldots, n$.
Examples of application of the Charlap-Vasquez method

Computation of $H^2(\Gamma, \mathbb{Z}_2)$:

Theorem

If there are $n-1$ linearly independent \mathbb{Z}_2-class polynomials, then

$$\dim H^2(M, \mathbb{Z}_2) = \binom{k+1}{2} - \text{rank } d_{2,1}^{0,1} + kn - \text{rank } d_{2,1}^{1,1}$$
Examples of application of the Charlap-Vasquez method

Computation of $H^2(\Gamma, \mathbb{Z}_2)$:

\[
\dim H^2(M, \mathbb{Z}_2) = \binom{k + 1}{2} - \text{rank } d_{2}^{0,1} + kn - \text{rank } d_{2}^{1,1}
\]

Theorem

If there are $n - 1$ linearly independent \mathbb{Z}_2-class polynomials, then

\[
\dim H^2(M, \mathbb{Z}_2) = \binom{k + 1}{2} - \text{rank } d_{2}^{0,1} + kn - \text{rank } d_{2}^{1,1}
\]
Second Stiefel-Whitney class

\[\Gamma \xrightarrow{r} F \cong \mathbb{Z}_2^k \xrightarrow{i} D(n) \cong \mathbb{Z}_2^n \hookrightarrow O(n) \]

\((D(n) \cong \mathbb{Z}_2^n): \text{diagonal matrices in } O(n) \)

induces a map of \(M \) into \(BO(n) = \text{classifying map for } TM \).

Let \(x_1, \ldots, x_k \) be a basis of \(H^1(\mathbb{Z}_2^k, \mathbb{Z}_2) \) and let \(x'_1, \ldots, x'_n \) be the standard basis of \(H^1(D(n), \mathbb{Z}_2) \). The classes

\[\omega_\ell = i^*(x'_\ell) = \sum_{m} a_{m\ell} x_m, \]

are called the 2-weights of the map \(i \).

\[\sigma_j(\omega_1, \ldots, \omega_n) = j\text{-th elem symmetric function in } \omega_1, \ldots, \omega_n. \]

Proposition

Let \(\Gamma \xrightarrow{r} F = \mathbb{Z}_2^k \) be the projection map. Then

\[w_j(M) = r^* \sigma_j(\omega_1, \ldots, \omega_n). \]
Second Stiefel-Whitney class

\[\Gamma \to F \cong \mathbb{Z}_2^k \to D(n) \cong \mathbb{Z}_2^n \to O(n) \]

\((D(n) \cong \mathbb{Z}_2^n): \text{diagonal matrices in } O(n))\)

induces a map of \(M\) into \(BO(n) = \text{classifying map for } TM\).

Let \(x_1, \ldots, x_k\) be a basis of \(H^1(\mathbb{Z}_2^k, \mathbb{Z}_2)\) and let \(x'_1, \ldots, x'_n\) be the standard basis of \(H^1(D(n), \mathbb{Z}_2)\). The classes

\[\omega_{\ell} = i^*(x'_\ell) = \sum_m a_{m\ell} x_m, \]

are called the \textbf{2-weights} of the map \(i\).

\(\sigma_j(\omega_1, \ldots, \omega_n) = j\)-th elem symmetric function in \(\omega_1, \ldots, \omega_n\).

Proposition

Let \(\Gamma \to F = \mathbb{Z}_2^k\) be the projection map. Then

\[w_j(M) = r^* \sigma_j(\omega_1, \ldots, \omega_n). \]
Second Stiefel-Whitney class

\[
\begin{array}{c}
\Gamma \xrightarrow{r} F \cong \mathbb{Z}_2^k \xrightarrow{i} D(n) \cong \mathbb{Z}_2^n \hookrightarrow O(n)
\end{array}
\]

\((D(n) \cong \mathbb{Z}_2^n): \text{diagonal matrices in } O(n)\)

induces a map of \(M\) into \(BO(n) = \text{classifying map for } TM\).

Let \(x_1, \ldots, x_k\) be a basis of \(H^1(\mathbb{Z}_2^k, \mathbb{Z}_2)\) and let \(x'_1, \ldots, x'_n\) be the standard basis of \(H^1(D(n), \mathbb{Z}_2)\). The classes

\[
\omega_\ell = i^*(x'_\ell) = \sum_m a_{m\ell} x_m,
\]

are called the **2-weights** of the map \(i\).

\[
\sigma_j(\omega_1, \ldots, \omega_n) = j\text{-th elem symmetric function in } \omega_1, \ldots, \omega_n.
\]

Proposition

Let \(\Gamma \xrightarrow{r} F = \mathbb{Z}_2^k\) be the projection map. Then

\[
w_j(M) = r^* \sigma_j(\omega_1, \ldots, \omega_n).
\]
Second Stiefel-Whitney class

By the LHS Exact Sequence

$$\cdots \rightarrow H^1(\Lambda, \mathbb{Z}_2) \xrightarrow{d^0,1} H^2(F, \mathbb{Z}_2) \xrightarrow{r^*} H^2(\Gamma, \mathbb{Z}_2)$$

$$\implies \ker r^* = \text{Im } d^0,1 = \text{sums of } \mathbb{Z}_2\text{-class polynomials}$$

So

Theorem

Let M_Γ be an n-dim compact flat manifold with diagonal holonomy \mathbb{Z}_2^k. Then,

$$w_2 \neq 0 \iff \sigma_2(\omega_1, \ldots, \omega_n) \text{ is not a sum of } \mathbb{Z}_2\text{-class polyn.}$$
Second Stiefel-Whitney class

By the LHS Exact Sequence

\[\cdots \rightarrow H^1(\Lambda, \mathbb{Z}_2) \overset{d^0,1_2}{\rightarrow} H^2(F, \mathbb{Z}_2) \overset{r^*}{\rightarrow} H^2(\Gamma, \mathbb{Z}_2) \]

\[\implies \ker r^* = \text{Im} d^0,1_2 = \text{sums of } \mathbb{Z}_2\text{-class polynomials} \]

So

Theorem

\(M_{\Gamma} \) \(n \)-dim compact flat manifold with diagonal holonomy \(\mathbb{Z}_2^k \).

Then,

\(w_2 \neq 0 \iff \sigma_2(\omega_1, \ldots, \omega_n) \text{ is not a sum of } \mathbb{Z}_2\text{-class polyn.} \)
Second Stiefel-Whitney class

By the LHS Exact Sequence

\[\cdots \rightarrow H^1(\Lambda, \mathbb{Z}_2) \xrightarrow{d_2^{0,1}} H^2(F, \mathbb{Z}_2) \xrightarrow{r^*} H^2(\Gamma, \mathbb{Z}_2) \]

\[\Rightarrow \quad \ker r^* = \text{Im } d_2^{0,1} = \text{sums of } \mathbb{Z}_2\text{-class polynomials} \]

So

Theorem

\(M_\Gamma \) \(n \)-dim compact flat manifold with diagonal holonomy \(\mathbb{Z}_2^k \).

Then,

\[w_2 \neq 0 \iff \sigma_2(\omega_1, \ldots, \omega_n) \text{ is not a sum of } \mathbb{Z}_2\text{-class polyn.} \]
Cohomology and spectral properties

- We consider all 4-dimensional flat manifolds of diagonal type with $F \equiv \mathbb{Z}_2^2$ or $F \equiv \mathbb{Z}_2^3$ and we show several isospectral or p-isospectral pairs, with $1 \leq p \leq 3$, having different \mathbb{Z}_2-cohomology groups and where some of them have different lengths of closed geodesics.

- We find, for $n = 5$, many isospectral pairs with $F \equiv \mathbb{Z}_2^4$ having different $H^2(M_\Gamma, \mathbb{Z}_2)$ and having the same $H^1(M_\Gamma, \mathbb{Z}_2)$ and the same holonomy representations. Such examples are not possible to obtain in dimension 4.

Example ($#g1, #g4$ in the CARAT (Aachen) list)

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#g1$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#g4$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Cohomology and spectral properties

- We consider all 4-dimensional flat manifolds of diagonal type with $F \equiv \mathbb{Z}_2^2$ or $F \equiv \mathbb{Z}_2^3$ and we show several isospectral or ρ-isospectral pairs, with $1 \leq \rho \leq 3$, having different \mathbb{Z}_2-cohomology groups and where some of them have different lengths of closed geodesics.

- We find, for $n = 5$, many isospectral pairs with $F \equiv \mathbb{Z}_2^4$ having different $H^2(M_\Gamma, \mathbb{Z}_2)$ and having the same $H^1(M_\Gamma, \mathbb{Z}_2)$ and the same holonomy representations. Such examples are not possible to obtain in dimension 4.

Example ($\#g_1, \#g_4$ in the CARAT (Aachen) list)
Cohomology and spectral properties

- We consider all 4-dimensional flat manifolds of diagonal type with $F \equiv \mathbb{Z}_2^2$ or $F \equiv \mathbb{Z}_3^2$ and we show several isospectral or p-isospectral pairs, with $1 \leq p \leq 3$, having different \mathbb{Z}_2-cohomology groups and where some of them have different lengths of closed geodesics.

- We find, for $n = 5$, many isospectral pairs with $F \equiv \mathbb{Z}_2^4$ having different $H^2(M_\Gamma, \mathbb{Z}_2)$ and having the same $H^1(M_\Gamma, \mathbb{Z}_2)$ and the same holonomy representations. Such examples are not possible to obtain in dimension 4.

Example ($#g_1, #g_4$ in the CARAT (Aachen) list)
We determine the \mathbb{Z}_2-cohomology of all GHW manifolds in dimensions 3, 4 and 5, listing all isospectral classes.

$GHW =$ generalized Hantzsche-Wendt manifolds: dimension n flat manifolds having holonomy group \mathbb{Z}_2^{n-1}

$HW =$ orientable GHW

they are all rational homology spheres

Table: Cohomology classes of GHW manifolds in dimension 5.

<table>
<thead>
<tr>
<th>betti$_1$</th>
<th>betti$_2$</th>
<th>List of manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>7, 14, 16, 21, 58, 61, 67, 69, 74, 77, 84, 85, 104, 105, 106, 107, 112, 115, 117, 118, 121, 122</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2, 3, 4, 6, 8, 9, 10, 11, 13, 17, 18, 20, 22, 23, 36, 37, 38, 39, 40, 41, 44, 45, 50, 51, 52, 53, 57, 59, 60, 62, 65, 66, 68, 71, 73, 75, 76, 78, 80, 81, 82, 83, 90, 91, 92, 93, 96, 97, 98, 100, 101, 102, 109, 111, 113, 114, 116, 119</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1, 5, 12, 15, 19, 28, 29, 30, 31, 42, 43, 46, 47, 48, 49, 54, 55, 56, 63, 64, 70, 72, 79, 86, 87, 88, 89, 94, 95, 99, 103, 108, 110, 120, 123</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>24, 25, 26, 27, 32, 33, 34, 35</td>
</tr>
</tbody>
</table>

some isospectral manifolds have the same colors
Cohomology and spectral properties

- We determine the \mathbb{Z}_2-cohomology of all GHW manifolds in dimensions 3, 4 and 5, listing all isospectral classes.

GHW=generalized Hantzsche-Wendt manifolds:
dimension n flat manifolds having holonomy group \mathbb{Z}_2^{n-1}
HW = orientable GHW
they are all rational homology spheres

<table>
<thead>
<tr>
<th>betti$_1^{\mathbb{Z}_2}$</th>
<th>betti$_2^{\mathbb{Z}_2}$</th>
<th>List of manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>7, 14, 16, 21, 58, 61, 67, 69, 74, 77, 84, 85, 104, 105, 106, 107, 112, 115, 117, 118, 121, 122</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2, 3, 4, 6, 8, 9, 10, 11, 13, 17, 18, 20, 22, 23, 36, 37, 38, 39, 40, 41, 44, 45, 50, 51, 52, 53, 57, 59, 60, 62, 65, 66, 68, 71, 73, 75, 76, 78, 80, 81, 82, 83, 90, 91, 92, 93, 96, 97, 98, 100, 101, 102, 109, 111, 113, 114, 116, 119</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1, 5, 12, 15, 19, 28, 29, 30, 31, 42, 43, 46, 47, 48, 49, 54, 55, 56, 63, 64, 70, 72, 79, 86, 87, 88, 89, 94, 95, 99, 103, 108, 110, 120, 123</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>24, 25, 26, 27, 32, 33, 34, 35</td>
</tr>
</tbody>
</table>

some isospectral manifolds have the same colors
Cohomology and spectral properties

- We determine the \mathbb{Z}_2-cohomology of all GHW manifolds in dimensions 3, 4 and 5, listing all isospectral classes.

\[\text{GHW=generalized Hantzsche-Wendt manifolds:} \]
\[\text{dimension } n \text{ flat manifolds having holonomy group } \mathbb{Z}_2^{n-1} \]
\[\text{HW = orientable GHW} \]
\[\text{they are all rational homology spheres} \]

Table: Cohomology classes of GHW manifolds in dimension 5.

<table>
<thead>
<tr>
<th>betti$_1^{\mathbb{Z}_2}$</th>
<th>betti$_2^{\mathbb{Z}_2}$</th>
<th>List of manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>7, 14, 16, 21, 58, 61, 67, 69, 74, 77, 84, 85, 104, 105, 106, 107, 112, 115, 117, 118, 121, 122</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2, 3, 4, 6, 8, 9, 10, 11, 13, 17, 18, 20, 22, 23, 36, 37, 38, 39, 40, 41, 44, 45, 50, 51, 52, 53, 57, 59, 60, 62, 65, 66, 68, 71, 73, 75, 76, 78, 80, 81, 82, 83, 90, 91, 92, 93, 96, 97, 98, 100, 101, 102, 109, 111, 113, 114, 116, 119</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1, 5, 12, 15, 19, 28, 29, 30, 31, 42, 43, 46, 47, 48, 49, 54, 55, 56, 63, 64, 70, 72, 79, 86, 87, 88, 89, 94, 95, 99, 103, 108, 110, 120, 123</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>24, 25, 26, 27, 32, 33, 34, 35</td>
</tr>
</tbody>
</table>

some isospectral manifolds have the same colors
Stiefel-Whitney classes and spectral properties

- For $n = 4$, we exhibit p-isospectral pairs for all p, M, M', that have the same (\mathbb{Z}_2)-cohomology but such that $w_2(M) \neq 0$ and $w_2(M') = 0$

See manifolds labelled $(1, 1, 0)$ and $(1, 0, 1)$ in the family \mathcal{K}_4:

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{x}{2}$</td>
<td>$\frac{y}{2}$</td>
<td>$\frac{z}{2}$</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table: Family \(\mathcal{K}_4 \)

<table>
<thead>
<tr>
<th>((x,y,z))</th>
<th>(\text{betti}^{Z_2}_1 = \text{betti}^{Z_2}_3)</th>
<th>(\text{betti}^{Z_2}_2)</th>
<th>(w_2)</th>
<th>Sunada n.</th>
<th>isospectral pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0))</td>
<td>4</td>
<td>6</td>
<td>(\neq 0)</td>
<td>((1\ 0\ 0))</td>
<td>((2\ 1\ 0))</td>
</tr>
<tr>
<td>((1,0,0))</td>
<td>3</td>
<td>4</td>
<td>(\neq 0)</td>
<td>((1\ 0\ 0))</td>
<td>((2\ 1\ 0))</td>
</tr>
<tr>
<td>((1,1,0))</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>((1\ 0\ 0))</td>
<td>((2\ 1\ 0))</td>
</tr>
<tr>
<td>((0,1,0))</td>
<td>3</td>
<td>4</td>
<td>(\neq 0)</td>
<td>((1\ 0\ 0))</td>
<td>((2\ 1\ 0))</td>
</tr>
<tr>
<td>((0,0,1))</td>
<td>4</td>
<td>6</td>
<td>(\neq 0)</td>
<td>((1\ 0\ 0))</td>
<td>((3\ 0\ 0))</td>
</tr>
<tr>
<td>((1,0,1))</td>
<td>3</td>
<td>4</td>
<td>(\neq 0)</td>
<td>((1\ 0\ 0))</td>
<td>((2\ 1\ 0))</td>
</tr>
<tr>
<td>((0,1,1))</td>
<td>3</td>
<td>4</td>
<td>(\neq 0)</td>
<td>((1\ 0\ 0))</td>
<td>((2\ 1\ 0))</td>
</tr>
<tr>
<td>((1,1,1))</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>((1\ 0\ 0))</td>
<td>((3\ 0\ 0))</td>
</tr>
</tbody>
</table>

Sunada numbers: \(c_{s,t} = \text{number of elements in the holonomy } F \text{ of } M_\Gamma\), having exactly \(s\) 1’s in the diagonal (or column) and \(t\) \(\frac{1}{2}\)'s coming with those 1’s, \(0 \leq t \leq s \leq n\).